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 Abstract - This paper presents a software system for image-

based terrain classification that mimics a human supervisor’s 

segmentation and classification of training images into “Go” and 

“NoGo” regions. The system identifies a set of image chips in the 

training images that span the range of terrain appearance.  It 

then uses these exemplars to segment novel images and assign 

fuzzy Go/NoGo classification.  System parameters adapt to new 

inputs, providing a mechanism for learning.  

 
 Index Terms – terrain classification, computer vision, machine 

learning, exemplar memory 

 

I.  INTRODUCTION 

 Unstructured vision-based navigation continues to be an 

especially difficult problem for small robotic systems. If they 

are even equipped with a vision system, monocular and 

stereovision video remain the systems of choice for small 

inexpensive robots. In this paper, we present an approach to 

automated image segmentation and terrain classification using 

exemplars, or small image samples, to represent the variety of 

terrain appearance.  

 Exemplars are used as cluster seeds to segment the 

terrain. Local pieces of terrain are assigned to the exemplar to 

which they are most similar in appearance. The pieces of 

terrain then inherit the terrain class membership of the 

exemplar. Exemplar models assume that intact stimuli are 

stored in memory, and that classification or recognition is 

determined by the degree of similarity between a stimulus and 

the stored exemplars. Simple generalization effects explain 

correct classification of novel (previously unseen) instances of 

categories. Only the item information is used for classification 

decisions, and that categorization relies on the comparison of a 

new stimulus with known exemplars of the category. 

 Exemplar models are the most parsimonious models of 

categorization in terms of the underlying associative 

mechanism [1].  Exemplar based learning was originally 

proposed as a model of human learning in Ref. [2], and has 

since been shown to explain both human and animal visual 

classification performance significantly better than alternative 

hypotheses of feature-based and prototype-based processing 

[3,4].   

 Various researchers have begun to develop methods to 

forecast traversability using estimates of geometrical 

properties inferred from non-contract sensors. References [5] 

and [6] developed a fuzzy-rule-based system to mimic human 

“high/medium/low” trafficability assessment based on 

measures of roughness, slope and distance between obstacles 

computed from stereo imagery. The system was targeted for 

planetary rover environments.  Reference [7] used a stereo 

color vision system together with a single axis LADAR to 

classify terrestrial terrain cover and detect obstacles. They 

noted that the color-based classification system could be made 

more robust by considering texture of regions and shape 

features of objects. Reference [8] defined a trafficability index 

equal to the weighted sum of the slope and roughness 

estimated from line-scanning laser rangefinder data.   

Reference [9] classified terrain as impassible (NoGo) if any of 

several properties were above a threshold:  height variation, 

the surface normal orientation, and the presence of an 

elevation discontinuity (all estimated from LADAR imagery).  

Reference [10] developed a rule-based system for terrain 

classification from LADAR and color camera imagery. 

 Appearance based approaches do not attempt to directly 

estimate geometrical properties and then infer traversability.  

Instead, they associate the operator’s assessment of 

trafficability directly from the terrain appearance.   The 

operator’s trafficability assessment is not restricted to 

geometrical properties, but can also reflect surface properties 

(e.g., friction, resistance, sinkage) and factors that do not 

affect traversability but which nonetheless exclude certain 

terrain (e.g., the risk of being run over by a car or the need to 

avoid detection by staying in shaded areas). 

 Various applications could benefit from automatic 

methods to segment and classify terrain from images, such as 

virtual reality simulated terrain, mobile robot navigation, 

combat engineering planning, and land cover analysis for 

ecological studies. These applications address different scales, 

terrain features and classes of interest. It is unlikely that any 

specific segmentation and classification criteria would be 

suitable for all of these applications. Nonetheless, the 

applications have important similarities.  In all cases, we 

implicitly assume that local areas with similar appearance 

should be grouped together in any segmentation, and that they 

are likely to be representatives of the same terrain class. We 

also implicitly assume that we know in advance what terrain 

classes we are interested in and what they commonly look 

like. For the purposes of this research, we assume that the 

segmented terrain regions or regions of the same terrain class 

do not have any a priori constraints on their geometric shape 

or global organization. We also assume that there are no a 

priori constraints regarding which terrain classes can be 

adjacent to each other. 

 The approach is currently implemented as a software 

system designed to provide considerable flexibility in the 

choices of perspective transformation, resolution, scale, 
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sampling and difference metric. In general, different choices 

will be appropriate for different applications. The software 

automatically builds a characteristic “basis set” of exemplars 

from training images.  It provides an option for building a set 

of exemplars for each terrain class, with the union over the 

terrain classes being the basis set exemplars for an application. 

A second option is to build a set of terrain segmentation 

exemplars independent of the terrain classes, and then 

associate the exemplars with terrain classes. In its present 

form, the software does not attempt to resolve ambiguities 

when an area does not resemble any of the a priori terrain 

classes, or areas that have partial membership in two or more 

terrain classes. Instead, it produces a fuzzy classification, i.e., 

a segment of terrain can have partial membership in different 

terrain classes, and may be partially unclassified. 

II. TECHNICAL APPROACH 

 The code is organized into two routines: one for training 

and one to apply segmentation and classification. At the end of 

training, the exemplar bank and associated data are stored in a 

file to be loaded before applying the segmentation and 

classification.  

A. Training Images and Overlays  

 The user must provide a set of representative training 

images. Ideally, the training images would be drawn from the 

same distribution as the downstream application images. In 

practice, it may not be possible to ensure that the two image 

sets are drawn from the same distribution.  The effect on 

segmentation and classification performance of different 

terrain, foliage, season, lighting, and weather between the 

training image set and test/application image set is a question 

for empirical investigation. In principle, the images can be 

multi-spectral with an arbitrary number of planes. The current 

code requires that the images be RGB or monochrome images 

stored in a standard image format.   

 For each training image, a corresponding terrain 

classification overlay is required. The overlay denotes which 

locations correspond to which terrain class. One approach is to 

use an N plane image, where N is the number of terrain classes 

and each plane is a binary image. An alternative approach is to 

use a single plane image, using integer values from 1 to N (for 

the N terrain classes), and zero for unclassified locations. This 

representation is more appropriate when there are a large 

number of terrain classes, or when the terrain classes 

constitute an ordered set, e.g., ordered by traverse ability cost 

or by speed-made-good. For purposes of demonstration, we 

use two terrain classes (e.g., “Go” and “NoGo” regions) and 

the overlays are stored as three-plane RGB images (the third 

plane is not used). The terrain classification is displayed as an 

RGB image in which one terrain class is coded red and the 

other is coded green, with blue used to code unclassified 

regions.  An example of this is shown in Fig. 1, where the 

gravel driveway is designated as a “Go” region and everything 

else is designated a “NoGo” region. 

B. Perspective Transformation, Resolution, Scale and 

Sampling  

 In some cases, a transformation from original camera 

perspective may be appropriate. In the camera image view, 

pixels represent the same angle (assuming lens distortion 

effects are minimal), but do not project onto equal areas of 

ground. Assuming the elevation of the camera is large relative 

to the variation in ground elevation in the scene, the pseudo 

plan view projection can be used to create a new image in 

which each pixel corresponds to the same ground area (see 

Fig. 2).  The pseudo plan view projection is good for areas 

where the variation in elevation is small relative to the 

elevation of the camera, but produces distortion when this is 

not the case.  An alternative projection is to restrict analysis to 

horizontal sub-bands within the image. The band view does 

not distort vertical objects, but retains the perspective 

distortion of the original camera image for flat earth regions. 

 Both the pseudo plan view and camera view options are 

supported in the current code.  Both transformations require 

the size of the camera image, and the angle subtended by an 

individual pixel (we assume square pixels). The pseudo plan 

view projection requires three additional inputs:  (1) the height 

of the camera above ground plane, (2) the distance on the 

ground from the spot below the camera to the ground 

projection of the bottom row of the image, and (3) the desired 

resolution of the projected image, i.e. the pixel width of the 

output projection in centimeters. 

 The camera band view also requires three additional 

inputs:  (1) the image row number of the top row of the band, 

(2) the image row number of the bottom row of the band, and 

(3) the resolution for the band-view image (the angle of pixels 

in the band view image must be less than or equal to the pixel 

angle of the original camera image). 

 The user must also specify the analysis scale for terrain 

segmentation and classification.  The segmentation and 

 

   

 

 
 

   

Fig 2 Camera image view and pseudo plan view. 

   

Fig. 1 Input training image and classification. 



classification is based on exemplar image chips (square chips 

in the current code).  The scale is the width of the exemplar 

chips.  Membership in a terrain class is considered to be a bulk 

property of a local region, not a point-location property.  The 

user must also specify the center-to-center spacing, or 

sampling distance, for the output segmentation and 

classification images.  

C. Image Space Transformation  

 The purpose of the image space transformation is to 

amplify the importance of selected image properties. For 

example, the imagery can be transformed into a variety of 

color spaces.  The importance of color could be strengthened 

or weakened by weighting different image planes.  In addition 

to the RGB color coordinate system, we have experimented 

with the HSV (hue, saturation, value) system. 

 Constructing a multi-resolution pyramid representation 

and then applying weights to the image planes would allow 

the adjustment of high spatial frequency content relative to 

low spatial frequency content. 

 The space transformation could increase the 

dimensionality of the image space.  Consider a monocular 

image input.  The image could be processed through a bank of 

N spatial filters, such as edge and corner filters at different 

spatial scales and orientations.  Each filter produces a single-

plane output image.  

D. The Exemplar Basis Set  

 The current code processes the training images one at a 

time. There is an option to find exemplars of each image 

independent of exemplars from other images, or to find only 

new exemplars sufficiently different from exemplars built 

from preceding images. The current image is chopped into 

chips at the specified scale and sampling distance. If the 

option was selected to process the image independently from 

previous images, all chips are nominated as potential 

exemplars. If the exemplar processing is in the context of 

previous exemplars, only chips whose minimum distance (in 

terms of the image metric) to existing exemplars is greater 

than the current clustering threshold are nominated as 

potential exemplars:  chips that resemble current exemplars 

are not considered as possible new exemplars.  

 Each chip is compared to its neighbors within a specified 

radius to calculate the difference metric between it and each of 

its neighbors (the radius is a user input). The aggregate local 

difference between the chip and its neighbors is calculated as 

the weighted average of the mean and minimum differences 

(The weight is a user input. Weighting towards the minimum 

leads to a larger pool of exemplars, and weighting towards the 

mean leads to a smaller pool of exemplars).  Chips similar to 

their neighbors are preferred over those that are different. 

 The code calculates a clustering threshold equal to the 

weighted sum of the minimum and maximum local differences 

over all chips (The weight is a user input. Weighting towards 

the minimum leads to a larger pool of exemplars and tighter 

clusters. Weighting towards the maximum leads to a smaller 

pool of exemplars and broader clusters). This threshold 

provides the system’s adaptation ability. Training images with 

significant variability provide coarser segmentation over 

training images with lower variability, for the same size of 

exemplar bank. 

 Exemplars for the current image are selected iteratively. 

Initially, no chips are rejected. Of the non-rejected chips, the 

one with the minimum local difference is added to the bank of 

exemplars.  All chips with difference less than the clustering 

threshold from the exemplar are rejected.  This process is 

iterated until all chips have either been added to the exemplar 

bank or rejected. The exemplars for the current image are then 

merged with the bank of exemplars from the previous images.  

E. Image Chip Difference Metric  

 Image difference metrics remain an open issue in the 

evaluation of image compression schemes.  While it is easy to 

measure the amount of compression, and the 

encoding/decoding time, it is not clear how to measure the 

quality of the reconstructed image, i.e., its difference in 

appearance from the original. Different image characteristics 

are important depending on the image content, the questions at 

hand, and who is looking at the image.   

 Similarly, there is no obviously correct metric for 

measuring the difference between two images.  Before the 

images are chopped into chips, they can be processed to 

balance the relevant image characteristics (see II.C Image 

Space Transformation).  In principle, therefore, simple 

measures of the aggregate difference are all that are needed. 

Even so, there are many different ways to calculate the 

difference between two image chips, e.g.,  

(1) the sum over all pixel locations and all image planes of the 

absolute value of the difference between the two images;  

(2) the root sum square over all pixel locations and all image 

planes of the difference between the two images;   

(3) the maximum over all image planes of the sum over all 

pixel locations of the absolute value of the difference between 

the two images;   

(4) the sum over all pixel locations of the maximum over all 

image planes of the absolute value of the difference between 

the two images;  

(5) the root sum square over all image planes of the difference 

in the mean values (over pixel locations) of the two images; 

and   

(6) the root sum square over all image planes of the difference 

in the mean values and difference in standard deviations (over 

pixel locations) of the two images.  

 Two important classes of metrics are those computed 

from the difference between the images (metrics 1 through 4), 

and those computed from the difference in statistics computed 

from the individual images (metrics 5 and 6). While the code 

is set up to incorporate different metrics, all of the results in 

this paper used metric (1).  

F. Exemplar Membership in Terrain Classes  

 Each image chip maps to a region in the terrain 

classification overlay. The terrain classification of the image 

chip is simply the expected membership in each of the terrain 

classes. It is possible that a chip could straddle more than one 

terrain class, or could straddle an unclassified portion of the 



overlay. After the new exemplars are added to the exemplar 

bank, the current image is segmented using all of the 

exemplars in the bank. Each chip location in the image is 

assigned to the exemplar to which it is closest, provided the 

distance is less than the current clustering threshold. In some 

cases, some image chips may not be associated with any 

exemplar. For each exemplar in the bank, we accumulate the 

number of times the exemplar is “hit” by an image. The terrain 

class membership of the exemplar is the mean over all chips 

associated with the exemplar, of terrain class memberships of 

the chips. The terrain segmentation is converted to terrain 

classification by assigning each location the terrain class 

membership values of the exemplar associated with that image 

location.  

G. Output Illustration Controls  

 The code contains options to output different images to 

illustrate and provide insight into the processing:  

- the pseudo plan view or camera band view perspective 

transformation of the image;  

- the pseudo plan view or camera band view perspective 

transformation of the terrain class overlay;  

- the exemplar chips (at their location in the image) selected 

from the current image;  

- the segmentation of the current image based on the current 

bank of exemplars; and  

- the classification of the image based on the current bank of 

exemplars.  

There is no obvious and correct way to represent the different 

segments for purposes of visualization. Color-coding shows 

the different segments, but does not give much insight into the 

basis for the segmentation. The code illustrates the 

segmentation in a way that provides direct visual insight into 

the basis for the segmentation.  To visualize the segmentation, 

the code replaces each image chip with the exemplar chip that 

it is associated with (image chips not associated with any 

exemplar appear black) (See Fig. 4). When the sampling 

distance is less than the exemplar scale, the exemplars are 

blended in the reconstruction. The visualization image is the 

same size as the pseudo plan view or camera band view 

perspective image, so it is easy to directly compare the two. 

By using the exemplar chips themselves, the visualization 

image shows what the exemplars look like, and which image 

chips they are associated with. Finally, comparing the 

visualization to the perspective image gives prima fascia 

evidence of the credibility of the segmentation.  

H. Application for Segmentation and Classification 

 The application routine reads in the filter bank and 

associated data produced by the training routine. It segments 

and classifies the test images one at a time. No changes are 

made to the exemplar bank or associated data. After pseudo 

plan view or camera band view perspective processing, the 

test image is chopped into chips at the specified scale and 

sampling distance.  Each image chip is assigned to the closest 

matching exemplar, providing the match is within the current 

clustering threshold, otherwise the chip is unassigned. This 

produces the segmentation by exemplars. After the 

segmentation, each location is assigned the terrain class fuzzy 

membership of the segmenting exemplar. The classification 

image is at the resolution of the center-to-center sampling 

distance.   

III. DEMONSTRATION RESULTS 

 This section illustrates the segmentation and classification 

system. The demonstration uses color-coding to show the 

terrain classification into Go (green), NoGo (red), and 

Unclassified (blue) regions.  Fig. 3 shows classification results 

derived from the single training image in Fig. 1, where gravel 

is designated “Go” and everything else is “NoGo.”  Note the 

errors in (a) due to the building, in (c) due to the bright gravel 

patch, and in (d) due to the shadowed gravel. Fig. 4 shows an 

example of the reconstruction of images using the exemplar 

patches, as described in Sect. II.G. Adding a second training 

image (Fig. 5) to compensate for the misclassifications in Fig. 

3 due to the shadowed gravel, results in the classification 

results of Fig. 6. Note the improvement to Fig. 6(d) compared 

   

   
(a)                                          (b) 

 

   

   
(c)                                        (d) 

Fig. 3 Test images and resulting classification maps. 

   

Fig. 4 Reconstruction of Figs. 3(a) and (d) using exemplars. 



to Fig. 3(d).  However, the overall classification map has 

become noisier.   

 To compensate for different lighting conditions, we 

turned to the HSV (hue, saturation, value) color coordinate 

system. Fig. 7 shows an RGB rendition of the two training 

images (Figs. 1 and 5) in the HSV color space.  Fig. 8 shows 

classification results when using only the first training image.  

Note that the errors in Fig. 3, due to the house and the 

darkened gravel, are replaced by Unclassified regions.  The 

addition of the second HSV training image results in much 

improved classification in Fig. 9.  Fig. 10 shows that the 

classification results are only slightly degraded when just hue 

is used for classification. 

 However, hue alone is not sufficient in more complex 

scenarios. Fig. 11 shows the results of using just hue when the 

“Go” region includes both the gravel and grass regions in the 

training images. Fig. 12 demonstrates the improvement that is 

obtained when the other two dimensions (saturation and value) 

are also included. 

IV. FINDINGS AND OBSERVATIONS 

 This paper has demonstrated an approach to image-based 

terrain segmentation and classification using exemplars. 

Exemplars provide a simple way to represent the characteristic 

color/luminance and spatial patterns of terrain. Since the 

exemplars are drawn from training images in such a way as to 

span the appearance of the training images, they are well 

suited to represent the variations of appearance without an a 

priori model of terrain appearance. The software system, as 

presented, allows for considerable flexibility to specify the 

perspective transformation, image space transformation, scale, 

resolution, sampling density, and image difference metric. 

Empirical research is needed to tune these options for specific 

applications. Preliminary results indicate the approach has 

potential to segment terrain in a manner that is consistent with 

subjective perception. The segmentation appears to be robust 

over changes in lighting, specific terrain, and automatic 

camera gain and contrast adjustments.  Our preliminary results 

indicated that analysis in the camera band view was more 

useful for segmenting and classifying positive obstacles than 

the pseudo plan view. When presented with novel images, the 

camera band view was more likely to produce mixed 

Go/NoGo terrain classification, whereas the pseudo plan view 

was more likely to produce unclassified terrain segments. This 

may be due to the fact that the camera band view mixes 

different scales, whereas the pseudo plan view maintains more 

consistent scale. 

 The code performs quite well on the simplistic 

segmentation of gravel from other terrain. When presented 

with a combination of both grass and gravel, the system still 

performed reasonably well. Nonetheless, the preliminary 

analysis is not adequate to assess the value of this method of 

terrain classification for any specific application, e.g., robot 

navigation. More extensive testing, with a structured 

experimental objectives and design are needed to evaluate the 

applicability of this method of terrain classification for any 

specific application. The current code is reasonably fast, with 

the largest time consumption actually being the reconstruction 

of the segmentation images by inserting exemplars. But this 

step is for visualization purposes only. The method presented 

here does not address de-fuzzification, i.e., how to make 

discrete decisions based on the fuzzy membership, and does 

not address how to make discrete decisions when terrain class 

has partial membership in the “unclassified” set. The research 

   

Fig. 7 HSV training images. 

   
(a)                                          (b) 

   
(c)                                          (d) 

Fig. 6 Classification results with two training images. 

   

Fig. 5 Second training image and classification. 

   
(a)                                          (b) 

   
(c)                                          (d) 

Fig. 8 Classification results with one HSV training image. 



presented here does not address how to combine results 

obtained by analysis at different levels of resolution and/or 

scale. Further research in these topics is needed, in the context 

of specific applications.  

 Future work includes methods for pruning the exemplar 

bank, since the speed of the code is greatly influenced by the 

number of exemplars.  The current code already prunes those 

exemplars that have not been used recently. But a more direct 

pruning method is also needed. We will explore a second 

training iteration that measures exemplar proximity and also 

an iteration that assesses the performance of each exemplar, 

keeping those that perform best in terms of classification.  We 

also intend to investigate different color spaces, especially 

those that provide more uniform perceptual differences. 

Texture is known to be important and therefore, in future 

versions, we will add auxiliary image planes that explicitly 

include computed texture information.  Since terrain 

appearance varies as a function of distance, we also anticipate 

fusing range data from a stereo camera system with the color 

and implicit texture information currently being used. 
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(a)                                          (b) 

   
(c)                                          (d) 

Fig. 12 Grass/gravel classification results with two HSV training 
images. 

   
(a)                                          (b) 

   
(c)                                          (d) 

Fig. 11 Grass/gravel classification results using only hue. 

   
(a)                                          (b) 

   
(c)                                          (d) 

Fig. 9 Classification results with two HSV training images. 

   
(a)                                          (b) 

   
(c)                                          (d) 

Fig. 10 Classification results using only hue. 


